Share Email Print

Journal of Medical Imaging

Association of computerized texture features on MRI with early treatment response following laser ablation for neuropathic cancer pain: preliminary findings
Author(s): Pallavi Tiwari; Shabbar Danish; Benjamin Jiang; Anant Madabhushi
Format Member Price Non-Member Price
PDF $20.00 $25.00

Paper Abstract

Laser interstitial thermal therapy (LITT) has recently emerged as a new treatment modality for cancer pain management that targets the cingulum (pain center in the brain) and has shown promise over radio frequency (RF)-based ablation, due to magnetic resonance image (MRI) guidance that allows for precise ablation. Since laser ablation for pain management is currently exploratory and is only performed at a few centers worldwide, its short- and long-term effects on the cingulum are currently unknown. Traditionally, treatment effects for neurological conditions are evaluated by monitoring changes in intensities and/or volume of the ablation zone on post-treatment Gadolinium-contrast T1-w (Gd-T1) MRI. However, LITT introduces subtle localized changes corresponding to tissues response to treatment, which may not be appreciable on visual inspection of volumetric or intensity changes. Additionally, different MRI protocols [Gd-T1, T2w, gradient echo sequence (GRE), fluidattenuated inversion recovery (FLAIR)] are known to capture complementary diagnostic information regarding the patient’s response to treatment; the utility of these MRI protocols has so far not been investigated to evaluate early and localized response to LITT treatment in the context of neuropathic cancer pain. In this work, we present the first attempt at (a) examining early treatment-related changes on a per-voxel basis via quantitative comparison of computer-extracted texture descriptors across pre- and post-LITT multiparametric (MP-MRI) (Gd-T1, T2w, GRE, FLAIR), subtle microarchitectural texture changes that may not be appreciable on original MR intensities or volumetric differences, and (b) investigating the efficacy of different MRI protocols in accurately capturing immediate post-treatment changes reflected (1) within and (2) outside the ablation zone. A retrospective cohort of four patient studies comprising pre- and immediate (24 h) post-LITT 3 Tesla Gd-T1, T2w, GRE, and FLAIR acquisitions was considered. Our quantitative approach first involved intensity standardization to allow for grayscale MR intensities acquired pre- and post-LITT to have a fixed tissue-specific meaning within the same imaging protocol, the same body region, and within the same patient. An affine registration was then performed on individual post-LITT MRI protocols to a reference MRI protocol pre-LITT. A total of 78 computerized texture features (co-occurrence matrix homogeneity, neighboring gray-level dependence matrix, Gabor) are then extracted from pre- and post-LITT MP-MRI on a per-voxel basis. Quantitative, voxelwise comparison of the changes in MRI texture features between pre- and post-LITT MRI indicate that (a) Gabor texture features at specific orientations were highly sensitive as well as specific in predicting subtle microarchitectural changes within and around the ablation zone pre- and post-LITT, (b) FLAIR was identified as the most sensitive MRI protocol in identifying early treatment changes yielding a normalized percentage change of 360% within the ablation zone relative to its pre-LITT value, and (c) GRE was identified as the most sensitive MRI protocol in quantifying changes outside the ablation zone post-LITT. Our preliminary results thus indicate potential for noninvasive computerized MP-MRI features over volumetric features in determining localized microarchitectural early focal treatment changes post-LITT for neuropathic cancer pain treatment.

Paper Details

J. Med. Img. 2(4) 041008 doi: 10.1117/1.JMI.2.4.041008
Published in: Journal of Medical Imaging Volume 2, Issue 4, October 2015
Show Author Affiliations
Pallavi Tiwari, Case Western Reserve Univ. (United States)
Shabbar Danish, Univ. of Medicine & Dentistry of New Jersey (United States)
Benjamin Jiang
Anant Madabhushi, Case Western Reserve Univ. (United States)

© SPIE. Terms of Use
Back to Top