Share Email Print

Journal of Biomedical Optics

Laser-induced heating integrated with a microfluidic platform for real-time DNA replication and detection
Author(s): Min-Sheng Hung; Chia-Chin Ho; Chih-Pin Chen
Format Member Price Non-Member Price
PDF $20.00 $25.00

Paper Abstract

This study developed a microfluidic platform for replicating and detecting DNA in real time by integrating a laser and a microfluidic device composed of polydimethylsiloxane. The design of the microchannels consisted of a laser-heating area and a detection area. An infrared laser was used as the heating source for DNA replication, and the laser power was adjusted to heat the solutions directly. In addition, strong biotin–avidin binding was used to capture and detect the replicated products. The biotin on one end was bound to avidin and anchored to the surface of the microchannels, whereas the biotin on the other end was bound to the quantum dots (Qdots). The results showed that the fluorescent intensity of the Qdots bound to the replicated products in the detection area increased with the number of thermal cycles created by the laser. When the number of thermal cycles was ≥10, the fluorescent intensity of the Qdots was directly detectable on the surface of the microchannels. The proposed method is more sensitive than detection methods entailing gel electrophoresis.

Paper Details

Date Published: 12 August 2016
PDF: 7 pages
J. Biomed. Opt. 21(8) 087003 doi: 10.1117/1.JBO.21.8.087003
Published in: Journal of Biomedical Optics Volume 21, Issue 8
Show Author Affiliations
Min-Sheng Hung, National Chiayi Univ. (Taiwan)
Chia-Chin Ho, Chip Win Technology Co., Ltd. (Taiwan)
Chih-Pin Chen, National Chiayi Univ. (Taiwan)

© SPIE. Terms of Use
Back to Top