Share Email Print
cover

Journal of Biomedical Optics

Characterizing the resolvability of real superluminescent diode sources for application to optical coherence tomography using a low coherence interferometry model
Author(s): Paul Vernon Jansz; Steven Richardson; Graham Wild; Steven Hinckley
Format Member Price Non-Member Price
PDF $20.00 $25.00

Paper Abstract

The axial resolution is a critical parameter in determining whether optical coherent tomography (OCT) can be used to resolve specific features in a sample image. Typically, measures of resolution have been attributed to the light source characteristics only, including the coherence length and the point spread function (PSF) width of the OCT light sources. The need to cost effectively visualize the generated PSF and OCT cross-correlated interferogram (A-scan) using many OCT light sources have led to the extrinsic evolution of the OCT simulation model presented. This research indicated that empirical resolution <italic<in vivo</italic<, as well as depending on the light source’s spectral characteristics, is also strongly dependent on the optical characteristics of the tissue, including surface reflection. This research showed that this reflection could be digitally removed from the A-scan of an epithelial model, enhancing the stratum depth resolution limit (SDRL) of the subsurface tissue. Specifically, the A-scan portion above the surface, the front surface interferogram, could be digitally subtracted, rather than deconvolved, from the subsurface part of each A-scan. This front surface interferogram subtraction resulted in considerably reduced empirical SDRLs being much closer to the superluminescent diodes’ resolution limits, compared to the untreated A-scan results.

Paper Details

Date Published: 5 August 2014
PDF: 21 pages
J. Biomed. Opt. 19(8) 085003 doi: 10.1117/1.JBO.19.8.085003
Published in: Journal of Biomedical Optics Volume 19, Issue 8
Show Author Affiliations
Paul Vernon Jansz, Edith Cowan Univ. (Australia)
Steven Richardson, Edith Cowan Univ. (Australia)
Graham Wild, RMIT Univ. (Australia)
Steven Hinckley, Edith Cowan Univ. (Australia)


© SPIE. Terms of Use
Back to Top