Share Email Print

Journal of Biomedical Optics

Advanced demodulation technique for the extraction of tissue optical properties and structural orientation contrast in the spatial frequency domain
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We have developed a method for extracting spatial frequency information content from biological tissue, which is used to calculate tissue optical properties and determine tissue structural orientation. This demodulation method employs a two-dimensional Hilbert transform using a spiral phase function in Fourier space. The approach presented here allows for the determination of tissue optical properties using a single frame of data for each modulation frequency, increasing imaging speed by two to threefold versus conventional, three-phase spatial frequency domain imaging (SFDI). This new single-phase Hilbert transform approach recovers optical property and scattering orientation index values within 1% and 10% of three-phase SFDI, respectively. These results suggest that, using the Hilbert demodulation technique, SFDI data acquisition speed can be increased significantly while preserving data quality, which will help us move forward toward the implementation of a real-time SFDI platform.

Paper Details

Date Published: 23 May 2014
PDF: 9 pages
J. Biomed. Opt. 19(5) 056013 doi: 10.1117/1.JBO.19.5.056013
Published in: Journal of Biomedical Optics Volume 19, Issue 5
Show Author Affiliations
Kyle Nadeau, Beckman Laser Institute and Medical Clinic (United States)
Anthony J. Durkin, Beckman Laser Institute and Medical Clinic (United States)
Bruce J. Tromberg, Beckman Laser Institute and Medical Clinic (United States)

© SPIE. Terms of Use
Back to Top