Share Email Print
cover

Journal of Biomedical Optics • Open Access

Early monitoring of cerebral hypoperfusion in rats by laser speckle imaging and functional photoacoustic microscopy
Author(s): Hui Wang; Xiaoquan Yang; Zhen Wang; Zilin Deng; Hui Gong; Qingming Luo

Paper Abstract

Because cerebral hypoperfusion brings damage to the brain, prevention of cerebrovascular diseases correlative to hypoperfusion by studying animal models makes great sense. Since complicated cerebrovascular adaptive changes in hypoperfusion could not be revealed only by cerebral blood flow (CBF) velocity imaging, we performed multi-parameter imaging by combining laser speckle imaging and functional photoacoustic microscopy. The changes in CBF, hemoglobin oxygen saturation (SO2), and total hemoglobin concentration (HbT) in single blood vessels of ipsilateral cortex were observed during transient cerebral hypoperfusion by ligating the unilateral common carotid artery in rats. CBF, SO2, and HbT, respectively, decreased to 37±3%, 71±7.5%, and 92±1.3% of baseline in 6 s immediately after occlusion, and then recovered to 77±4.8%, 84±8%, and 96±2% of baseline in 60 s. These parameters presented the decrease with different degree and the following recovery over time after ligation, the recovery of SO2 lagged behind those of CBF and HbT, which had the similar response. The results demonstrated that complete monitoring of both cerebral hemodynamic response and oxygen metabolic changes occurred at the earliest period of cerebral hypoperfusion was possible by using the two image modalities with high temporal and spatial resolution.

Paper Details

Date Published: 7 May 2012
PDF: 10 pages
J. Biomed. Opt. 17(6) 061207 doi: 10.1117/1.JBO.17.6.061207
Published in: Journal of Biomedical Optics Volume 17, Issue 6
Show Author Affiliations
Hui Wang, Huazhong Univ. of Science and Technology (China)
Xiaoquan Yang, Huazhong Univ. of Science and Technology (China)
Zhen Wang, Huazhong Univ. of Science and Technology (China)
Zilin Deng, Huazhong Univ. of Science and Technology (China)
Hui Gong, Huazhong Univ. of Science and Technology (China)
Qingming Luo, Huazhong Univ. of Science and Technology (China)


© SPIE. Terms of Use
Back to Top