Share Email Print

Journal of Biomedical Optics • Open Access

Blood oxygen flux estimation with a combined photoacoustic and high-frequency ultrasound microscopy system: a phantom study
Author(s): Yan Jiang; Alex Forbrich; Tyler Harrison; Roger J. Zemp

Paper Abstract

The metabolic rate of oxygen consumption, an important indicator of tissue metabolism, can be expressed as the change of net blood oxygen flux into and out of a tissue region per 100 g of tissue. In this work, we propose a photoacoustic and Doppler ultrasound method for imaging local blood oxygen flux of a single vessel. An imaging system for combined photoacoustic and high-frequency ultrasound microscopy is presented. This system uses a swept-scan 25-MHz ultrasound transducer with confocal dark-field laser illumination optics. A pulse-sequencer enables ultrasonic and laser pulses to be interlaced so that photoacoustic and Doppler ultrasound images are co-registered. Since the mean flow speed can be measured by color Doppler ultrasound, the vessel cross-sectional area can be measured by power Doppler or structural photoacoustic imaging, and multi-wavelength photoacoustic methods can be used to estimate oxygen saturation (sO2) and total concentration of haemoglobin (CHb), all of the parameters necessary for oxygen flux estimation can be provided. The accuracy of the flow speed and sO2 estimation has been investigated. In vitro sheep blood phantom experiments have been performed at different sO2 levels and mean flow speeds. Blood oxygen flux has been estimated, and the uncertainty of the measurement has been quantified.

Paper Details

Date Published: 3 April 2012
PDF: 9 pages
J. Biomed. Opt. 17(3) 036012 doi: 10.1117/1.JBO.17.3.036012
Published in: Journal of Biomedical Optics Volume 17, Issue 3
Show Author Affiliations
Yan Jiang, Univ. of Alberta (Canada)
Alex Forbrich, Univ. of Alberta (Canada)
Tyler Harrison, Univ. of Alberta (Canada)
Roger J. Zemp, Univ. of Alberta (Canada)

© SPIE. Terms of Use
Back to Top