Share Email Print

Journal of Biomedical Optics

Effects of light scattering on optical-resolution photoacoustic microscopy
Author(s): Yan Liu; Chi Zhang; Lihong V. Wang
Format Member Price Non-Member Price
PDF $20.00 $25.00

Paper Abstract

The imaging depth of ballistic optical imaging technologies is limited by light scattering. To study the effects of scattering on optical-resolution photoacoustic microscopy (OR-PAM), the signals were divided into target and background signals. A method to simulate the point spread function (PSF) of the PAM system considering both optical illumination and acoustic detection was proposed, then the PSF was used to calculate the contribution of each class of signal at different depths of the focal plane (zf ). How image contrast is degraded when there is a uniformly absorbing background as well as when there are small targets densely packed in the acoustic resolution cell were studied. By using the hyperboloid-focusing-based Monte Carlo method, optical focusing into a scattering medium was simulated. It was found that the lateral resolution provided by optical focusing is degraded by only 14% when zf = 1.1 transport mean free path (lt), compared with the case of no scattering. When zf = 1.7lt, the fluence at 50 μm radial distance away from the focal point is 93% of that at the focal point, which shows optical focusing is very weak at this depth. The method to simulate the PSF of PAM can be used in the future to optimize parameters so as to improve the system performance.

Paper Details

Date Published: 11 December 2012
PDF: 9 pages
J. Biomed. Opt. 17(12) 126014 doi: 10.1117/1.JBO.17.12.126014
Published in: Journal of Biomedical Optics Volume 17, Issue 12
Show Author Affiliations
Yan Liu, Washington Univ. in St. Louis (United States)
Chi Zhang, Washington Univ. in St. Louis (United States)
Lihong V. Wang, Washington Univ. in St. Louis (United States)

© SPIE. Terms of Use
Back to Top