Share Email Print

Optical Engineering

Three-dimensional recognition and tracking using neural networks trained on optimal views
Author(s): Barnabas Takacs; Lev S. Sadovnik
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We describe a general approach to the representation and recognition of 3-D objects as it applies to automatic target recognition (ATR) tasks. The method is based on locally adaptive target segmentation, neural network classifier design, and a novel view selection mechanism that develops ‘‘visual filters’’ responsive to specific target classes that encode the complete viewing sphere with a small number of prototypical examples. The optimal set of visual filters is found via a crossvalidation-like data reduction algorithm used to train banks of backpropagation (BP) neural networks. To improve recognition accuracy under noisy or occluded conditions, as well as to eliminate false alarms, the proposed recognition system employs a temporal evidence integration technique that enables tracking and lock-on even when both targets and camera move. Experimental results on synthetic and real-world imagery demonstrate the feasibility of our approach.

Paper Details

Date Published: 1 March 1998
PDF: 10 pages
Opt. Eng. 37(3) doi: 10.1117/1.601915
Published in: Optical Engineering Volume 37, Issue 3
Show Author Affiliations
Barnabas Takacs, George Mason Univ. (United States)
Lev S. Sadovnik, WaveBand Corp. (United States)

© SPIE. Terms of Use
Back to Top