Share Email Print

Journal of Electronic Imaging

Image segmentation by multigrid Markov random field optimization and perceptual considerations
Author(s): Jun Zhang; Dongyan Wang
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A Markov random field (MRF) approach to image segmentation is described. Unlike most previous MRF techniques, which are based on pixel classification, this approach groups pixels that are similar. This removes the need to know the number of image classes. Mean field theory and multigrid processing are used in the subsequent optimization to find a good segmentation and to alleviate local minimum problems. Variations of the MRF approach are investigated by incorporating features/schemes motivated by characteristics of the human vision system (HVS). Experimental results are promising and indicate that multigrid and HVS-based features/schemes can improve segmentation results.

Paper Details

Date Published: 1 January 1998
PDF: 9 pages
J. Electron. Imag. 7(1) doi: 10.1117/1.482626
Published in: Journal of Electronic Imaging Volume 7, Issue 1
Show Author Affiliations
Jun Zhang, Univ. of Wisconsin/Milwaukee (United States)
Dongyan Wang, Univ. of Wisconsin/Milwaukee (United States)

© SPIE. Terms of Use
Back to Top