Share Email Print

Journal of Biomedical Optics • Open Access

Quantitative analysis of dehydration in porcine skin for assessing mechanism of optical clearing

Paper Abstract

Dehydration induced by optical clearing agents (OCAs) can improve tissue optical transmittance; however, current studies merely gave some qualitative descriptions. We develop a model to quantitatively evaluate water content with partial least-squares method based on the measurements of near-infrared reflectance spectroscopy and weight of porcine skin. Furthermore, a commercial spectrometer with an integrating sphere is used to measure the transmittance and reflectance of skin after treatment with different OCAs, and then the water content and optical properties of sample are calculated, respectively. The results show that both the reduced scattering coefficient and dehydration of skin decrease with prolongation of action of OCAs, but the relative change in former is larger than that in latter after a 60-min treatment. The absorption coefficient at 1450 nm decreases completely coincident with dehydration of skin. Further analysis illustrates that the correlation coefficient between the relative changes in the reduced scattering coefficient and dehydration is ∼1 during the 60-min treatment of agents, but there is an extremely significant difference between the two parameters for some OCAs with more hydroxyl groups, especially, glycerol or D-sorbitol, which means that the dehydration is a main mechanism of skin optical clearing, but not the only mechanism.

Paper Details

Date Published: 1 September 2011
PDF: 10 pages
J. Biomed. Opt. 16(9) 095002 doi: 10.1117/1.3621515
Published in: Journal of Biomedical Optics Volume 16, Issue 9
Show Author Affiliations
Tingting Yu, Britton Chance Ctr. for Biomedical Photonics (China)
Xiang Wen, Britton Chance Ctr. for Biomedical Photonics (China)
Qingming Luo, Britton Chance Ctr. for Biomedical Photonics (China)
Dan Zhu, Britton Chance Ctr. for Biomedical Photonics (China)
Valery V. Tuchin, N.G. Chernyshevsky Saratov State Univ. (Russian Federation)

© SPIE. Terms of Use
Back to Top