Share Email Print

Journal of Nanophotonics

Interplay of device structure and intrinsic polymer photophysics and its effects on the ITO/PEDOT:PSS/MEH-PPV/Al photocurrent spectra
Author(s): Jovana P. Petrovic; Petar S. Matavulj; Leon R. Pinto; Sandra R. Zivanovic
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The dc photocurrent spectra of the indium tin oxide/poly(3,4-ethylene- dioxythiophene):poly(styrenesulfonate)/poly (2-methoxy-5-(2´-ethylhexyloxy)-1,4-phenylene- vinylene)Al (ITO/PEDOT:PSS/MEH-PPV/Al) device are measured for three different MEH-PPV thin-film thicknesses in a wide range of bias voltages and for several incident light intensities. The device operation is modeled based on a singlet exciton diffusion and hole polaron drift and diffusion. The Poole-Frenkel transport and the bimolecular Langevine recombination for hole polarons are assumed. The extrinsic photocarrier generation through singlet exciton dissociation on the electrodes and charge transfer in bulk of the polymer film is discussed. We considered three intrinsic charge-carrier photogeneration mechanisms: exciton-exciton annihilation, hot-exciton dissociation, and field dissociation. It is shown that the photocurrent is dominated by the field dissociation of singlet excitons. Experimental results compared to model predictions indicate that absorption coefficient of the MEH-PPV film is thickness dependent. This surprising result is experimentally investigated and confirmed. Excellent agreement between theory and experiment for all the measured photocurrent spectra is achieved.

Paper Details

Date Published: 1 January 2011
PDF: 20 pages
J. Nanophoton. 5(1) 051808 doi: 10.1117/1.3594090
Published in: Journal of Nanophotonics Volume 5, Issue 1
Show Author Affiliations
Jovana P. Petrovic, Univ. of Belgrade (Serbia)
Petar S. Matavulj, Univ. of Belgrade (Serbia)
Leon R. Pinto, Louisiana Tech Univ. (United States)
Sandra R. Zivanovic, Louisiana Tech Univ. (United States)

© SPIE. Terms of Use
Back to Top