Share Email Print

Journal of Biomedical Optics

Target detection and quantification using a hybrid hand-held diffuse optical tomography and photoacoustic tomography system
Format Member Price Non-Member Price
PDF $20.00 $25.00

Paper Abstract

We present a photoacoustic tomography-guided diffuse optical tomography approach using a hand-held probe for detection and characterization of deeply-seated targets embedded in a turbid medium. Diffuse optical tomography guided by coregistered ultrasound, MRI, and x ray has demonstrated a great clinical potential to overcome lesion location uncertainty and to improve light quantification accuracy. However, due to the different contrast mechanisms, some lesions may not be detectable by a nonoptical modality but yet have high optical contrast. Photoacoustic tomography utilizes a short-pulsed laser beam to diffusively penetrate into tissue. Upon absorption of the light by the target, photoacoustic waves are generated and used to reconstruct, at ultrasound resolution, the optical absorption distribution that reveals optical contrast. However, the robustness of optical property quantification of targets by photoacoustic tomography is complicated because of the wide range of ultrasound transducer sensitivity, the orientation and shape of the targets relative to the ultrasound array, and the uniformity of the laser beam. We show in this paper that the relative optical absorption map provided by photoacoustic tomography can potentially guide the diffuse optical tomography to accurately reconstruct target absorption maps.

Paper Details

Date Published: 1 April 2011
PDF: 13 pages
J. Biomed. Opt. 16(4) 046010 doi: 10.1117/1.3563534
Published in: Journal of Biomedical Optics Volume 16, Issue 4
Show Author Affiliations
Patrick D. Kumavor, Univ. of Connecticut (United States)
Chen Xu, Univ. of Connecticut (United States)
Andres Aguirre, Univ. of Connecticut (United States)
John K. Gamelin, Univ. of Connecticut (United States)
Yasaman Ardeshirpour, Univ. of Connecticut (United States)
Behnoosh Tavakoli, Univ. of Connecticut (United States)
Saeid Zanganeh, Univ. of Connecticut (United States)
Umar S. Alqasemi, Univ. of Connecticut (United States)
Yi Yang, Univ. of Connecticut (United States)
Quing Zhu, Univ. of Connecticut (United States)

© SPIE. Terms of Use
Back to Top