Share Email Print

Optical Engineering

Amplitude filter and Fourier-based modal method for quality control of microlenses array
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We present a computer simulation and an experimental realization of an optical setup for automatic quality control of microlenses arrays. The method is based on a 4f correlator setup with an amplitude filter. The output intensity signal is simple to analyze and interpret because the intensity is proportional to the first derivative of the distortion of the input wavefront. This method is shift invariant, allows for the examination of single elements, or sets of micro-optical elements simultaneously, and is particularly suitable for assessing the quality of optical elements. However, combining the method with a more detailed analysis based on the Fourier modal method, allows for obtaining quantitative data. Although errors are within the 2-3% range, such an analysis enables a fast and relatively accurate comparison of numerous elements with each other and with the model. The combination has never been applied but allows for a fast and cost-effective analysis that can be used for industrial purposes. Both the methods give separate results for each lens or for all the lenses in the array, simultaneously. In the combination proposed, the analysis is computer-based and done on the basis of the initial single optical measurement.

Paper Details

Date Published: 1 April 2011
PDF: 7 pages
Opt. Eng. 50(4) 043601 doi: 10.1117/1.3560259
Published in: Optical Engineering Volume 50, Issue 4
Show Author Affiliations
Rafal A. Kasztelanic, Univ. of Warsaw (Poland)

© SPIE. Terms of Use
Back to Top