Share Email Print

Optical Engineering

Region-based adaptive anisotropic diffusion for image enhancement and denoising
Author(s): Yi Wang; Ruiqing Niu; Liangpei Zhang; Huanfeng Shen
Format Member Price Non-Member Price
PDF $20.00 $25.00

Paper Abstract

A novel region-based adaptive anisotropic diffusion (RAAD) is presented for image enhancement and denoising. The main idea of this algorithm is to perform the region-based adaptive segmentation. To this end, we use the eigenvalue difference of the structure tensor of each pixel to classify an image into homogeneous detail, and edge regions. According to the different types of regions, a variable weight is incorporated into the anisotropic diffusion partial differential equation for compromising the forward and backward diffusion, so that our algorithm can adaptively encourage strong smoothing in homogeneous regions and suitable sharpening in detail and edge regions. Furthermore, we present an adaptive gradient threshold selection strategy. We suggest that the optimal gradient threshold should be estimated as the mean of local intensity differences on the homogeneous regions. In addition, we modify the anisotropic diffusion discrete scheme by taking into account edge orientations. We believe our algorithm to be a novel mechanism for image enhancement and denoising. Qualitative experiments, based on various general digital images and several T1- and T2-weighted magnetic resonance simulated images, show significant improvements when the RAAD algorithm is used versus the existing anisotropic diffusion and the previous forward and backward diffusion algorithms for enhancing edge features and improving image contrast. Quantitative analyses, based on peak signal-to-noise ratio, the universal image quality index, and the structural similarity confirm the superiority of the proposed algorithm.

Paper Details

Date Published: 1 November 2010
PDF: 19 pages
Opt. Eng. 49(11) 117007 doi: 10.1117/1.3517741
Published in: Optical Engineering Volume 49, Issue 11
Show Author Affiliations
Yi Wang, China Univ. of Geosciences (China)
Ruiqing Niu, China Univ. of Geosciences (China)
Liangpei Zhang, Wuhan Univ. (China)
Huanfeng Shen, Wuhan Univ. (China)

© SPIE. Terms of Use
Back to Top