Share Email Print

Journal of Biomedical Optics • Open Access

In vivo measurement of epidermal thickness changes associated with tumor promotion in murine models
Author(s): Kevin G. Phillips; Philippe Thuillier; Steven L. Jacques

Paper Abstract

The characterization of tissue morphology in murine models of pathogenesis has traditionally been carried out by excision of affected tissues with subsequent immunohistological examination. Excision-based histology provides a limited two-dimensional presentation of tissue morphology at the cost of halting disease progression at a single time point and sacrifice of the animal. We investigate the use of noninvasive reflectance mode confocal scanning laser microscopy (rCSLM) as an alternative tool to biopsy in documenting epidermal hyperplasia in murine models exposed to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). An automated technique utilizing average axial rCSLM reflectance profiles is used to extract epidermal thickness values from rCSLM data cubes. In comparisons to epidermal thicknesses determined from hematoxylin and eosin (H&E) stained tissue sections, we find no significant correlation to rCSLM-derived thickness values. This results from method-specific artifacts: physical alterations of tissue during H&E preparation in standard histology and specimen-induced abberations in rCSLM imaging. Despite their disagreement, both histology and rCSLM methods reliably measure statistically significant thickness changes in response to TPA exposure. Our results demonstrate that in vivo rCSLM imaging provides epithelial biologists an accurate noninvasive means to monitor cutaneous pathogenesis.

Paper Details

Date Published: 1 July 2010
PDF: 9 pages
J. Biomed. Opt. 15(4) 041514 doi: 10.1117/1.3455508
Published in: Journal of Biomedical Optics Volume 15, Issue 4
Show Author Affiliations
Kevin G. Phillips, Oregon Health & Science Univ. (United States)
Philippe Thuillier, Oregon Health & Science Univ. (United States)
Steven L. Jacques, Oregon Health & Science Univ. (United States)

© SPIE. Terms of Use
Back to Top