
Journal of Applied Remote Sensing
Optimal Envisat advanced synthetic aperture radar image parameters for mapping and monitoring Sahelian floodplainsFormat | Member Price | Non-Member Price |
---|---|---|
$20.00 | $25.00 |
![]() |
GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. | Check Access |
Paper Abstract
Floodplains in the Sahel region of Africa are of exceptional socio-economical and ecological importance. Due to their large extent and highly dynamic nature, monitoring these ecosystems can only be performed by means of remote sensing. The capability of the Envisat Advanced Synthetic Aperture Radar (ASAR) sensor to capture radar backscattering at various incident angles and with different polarization combinations, provides opportunities for improved wetland mapping and monitoring. However, little is known of the optimal image parameters, i.e. incident angle, polarization combination, and acquisition time. Backscatter ° signatures of Land Use and Land Cover (LULC) classes in and around the Waza-Logone floodplain (Cameroon) were analyzed to determine these optimal image parameters. Based on Jeffries-Matusita (JM) distances between all LULC classes it was determined that best separation was obtained with images acquired in the middle of the flooding cycle at a steep incident angle. Furthermore, separability of cross-polarized images was higher than for co-polarized images. The combination of two and three ASAR Alternating Polarization images with highest separability were used as input for a LULC classification. Two methods were evaluated: Pixel-based Maximum Likelihood and object-based Nearest Neighbour (NN) classification. Best results were obtained with the object-based approach.
Paper Details
Date Published: 1 March 2010
PDF: 17 pages
J. Appl. Rem. Sens. 4(1) 043511 doi: 10.1117/1.3368722
Published in: Journal of Applied Remote Sensing Volume 4, Issue 1
PDF: 17 pages
J. Appl. Rem. Sens. 4(1) 043511 doi: 10.1117/1.3368722
Published in: Journal of Applied Remote Sensing Volume 4, Issue 1
Show Author Affiliations
Toon Westra, Univ. Gent (Belgium)
Robert De Wulf, Univ. Gent (Belgium)
Robert De Wulf, Univ. Gent (Belgium)
Frieke Van Coillie, Univ. Gent (Belgium)
Sarah Crabbe, Univ. Gent (Belgium)
Sarah Crabbe, Univ. Gent (Belgium)
© SPIE. Terms of Use
