Share Email Print
cover

Journal of Applied Remote Sensing

Laser radar characterization of atmospheric aerosols in the troposphere and stratosphere using range dependent lidar ratio
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Laser radar (lidar) provides an excellent tool for characterizing the physical properties of atmospheric aerosols which play a very important role in modifying the radiative budget of the Earth's atmosphere. One of the important issues in lidar research is to derive accurate backscattering or extinction coefficient profiles required for understanding the basic mechanisms in the formation of aerosols and identifying their sources and sinks. Most of the inversion methods used for deriving the aerosol coefficients assume a range independent value for the extinction-to- backscattering ratio [lidar ratio, (LR)]. However, it is known that in a realistic atmosphere the value of LR is range dependent and varies with the physical and chemical properties of the aerosols. In this paper, we use a variant of widely applied Klett's method to obtain the range dependent LR values and derive the aerosol extinction profiles with good accuracy. We present the lidar derived aerosol extinction profiles in the upper troposphere and lower stratosphere corresponding to different seasons of the year of two distinctly different stations in the Indian subcontinent namely Trivandrum (8.33° N, 77° E), Kerala, India, a coastal station and Gadanki (13.5° N, 79.2° E), Tirupati, India an inland station. The range dependent LR is derived corresponding to different seasons of the year at the two stations. The lidar ratio, aerosol extinction coefficient (AEC), aerosol scattering ratio and aerosol optical depth show strong to medium seasonal variation at both the stations. The lidar ratio values at Trivandum vary in the range of 11-38 sr whereas the values range from 20-34 sr at Gadanki. AEC values at the Trivandum station vary from 7.9×10-6 to 6.9×10-5 m-1 and at Gadanki station the variation is from 1.27×10-5 to 6.9×10-5 m-1. It is proposed to use back-trajectory analysis to understand the sources of aerosol at the two stations.

Paper Details

Date Published: 1 January 2010
PDF: 20 pages
J. Appl. Remote Sens. 4(1) 043503 doi: 10.1117/1.3306573
Published in: Journal of Applied Remote Sensing Volume 4, Issue 1
Show Author Affiliations
Satyanarayana Malladi, Univ. of Kerala (India)
Radhakrishnan Soman Radha, Univ. of Kerala (India)
V. P. Mahadevan Pillai, Univ. of Kerala (India)
Veerabuthiran Sangipillai, Vikram Sarabhai Space Ctr. (India)
Presennakumar Bhargavan, Vikram Sarabhai Space Ctr. (India)
Murty Vinjanampaty, Indian Institute of Technology Madras (India)
Reghunath Karnam, National Atmospheric Research Lab. (India)


© SPIE. Terms of Use
Back to Top