Share Email Print
cover

Optical Engineering

Hyperspectral waveband selection for contaminant detection on poultry carcasses
Author(s): Songyot Nakariyakul; David P. Casasent
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We address the important product inspection application of contaminant detection on chicken carcasses. Detection of four contaminant types of interest (duodenum, ceca, colon, and ingesta) from chickens fed with three different feeds (corn, milo, and wheat) is considered. We consider feature selection algorithms for choosing a small set of spectral bands (wavelengths) in hyperspectral (HS) data for online contaminant detection. For cases when an optimal solution is not realistic, we introduce our new improved forward floating selection algorithm; we call it a quasi-optimal (close to optimal) algorithm. Our algorithm is an improvement on the state-of-the-art sequential forward floating selection algorithm. We train our algorithm on a pixel database using only corn-fed chickens and test it on HS images of carcasses with three feeds. Our new algorithm gives an excellent detection rate and performs better than other suboptimal feature selection algorithms on this database.

Paper Details

Date Published: 1 August 2008
PDF: 9 pages
Opt. Eng. 47(8) 087202 doi: 10.1117/1.2968693
Published in: Optical Engineering Volume 47, Issue 8
Show Author Affiliations
Songyot Nakariyakul, Thammasat Univ. (Thailand)
David P. Casasent, Carnegie Mellon Univ. (United States)


© SPIE. Terms of Use
Back to Top