Share Email Print

Optical Engineering

Dynamic characterization of a microgyroscope by digital image spectrum correlation
Author(s): W. Sun; Chenggen Quan; Xiaoyuan He
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In order to have an efficient design methodology and achieve high-performance inertial instruments, it is important to analyze the dynamic characteristics of micromechanical vibratory gyroscopes. In this paper, a novel optical method based on a high-speed CMOS camera and digital image spectrum correlation is developed to measure the motion of the sensitive elements. Unlike digital image correlation (DIC) in the spatial domain, correlation in the spectral domain gives direct access to the whole image under translational motion, which retains all the advantages of DIC and provides an expanded range of measurement. In addition, the proposed method is much faster in computation and capable of calculating dynamic temporal serial images in real time. The proposed method is employed to obtain the displacement of temporal series images and to extract dynamical parameters such as resonant frequency and quality factor at atmospheric pressure. During dynamic testing, the discrete wavelet transform is employed to eliminate the low-frequency components, and the continuous wavelet transform (CWT) for identification of the frequency and damping ratio. Experimental results show that the proposed method is a direct inspection tool and a practical alternative to the conventional electrical measurements of micromechanical vibratory gyroscopes.

Paper Details

Date Published: 1 March 2008
PDF: 7 pages
Opt. Eng. 47(3) 033602 doi: 10.1117/1.2896537
Published in: Optical Engineering Volume 47, Issue 3
Show Author Affiliations
W. Sun, National Univ. of Singapore (Singapore)
Chenggen Quan, National Univ. of Singapore (Singapore)
Xiaoyuan He, Southeast Univ. (China)

© SPIE. Terms of Use
Back to Top