Share Email Print

Journal of Applied Remote Sensing

Evaluating airborne hyperspectral imagery for mapping waterhyacinth infestations
Author(s): Chenghai Yang; James H. Everitt
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Waterhyacinth [Eichhornia crassipes (Mart.) Solms] is an exotic aquatic weed that often invades and clogs waterways in many tropical and subtropical regions of the world. The objective of this study was to evaluate airborne hyperspectral imagery and different image classification techniques for mapping waterhyacinth infestations on Lake Corpus Christi in south Texas. Hyperspectral imagery with bands in the visible to near-infrared region of the spectrum was acquired from two study sites and minimum noise fraction (MNF) transformation was used to reduce the spectral dimensionality of the imagery. Four classification methods, including minimum distance, Mahalanobis distance, maximum likelihood, and spectral angle mapper (SAM), were applied to the MNF-transformed imagery for distinguishing waterhyacinth from associated plant species (waterlettuce, mixed herbaceous species, and mixed woody species) and other cover types (bare soil and water). Accuracy assessment showed that overall accuracy varied from 79% for SAM to 96% for maximum likelihood for site 1 and from 84% for minimum distance to 95% for maximum likelihood for site 2. Kappa analysis showed that maximum likelihood was significantly better than the other three methods and that there were no significant differences in overall classifications among the other three methods. Producer's and user's accuracies for waterhyacinth based on maximum likelihood were 94% and 100%, respectively, for site 1 and 100% and 95% for site 2. These results indicate that airborne hyperspectral imagery incorporated with image transformation and classification techniques can be a useful tool for mapping waterhyacinth infestations.

Paper Details

Date Published: 1 November 2007
PDF: 17 pages
J. Appl. Rem. Sens. 1(1) 013546 doi: 10.1117/1.2821827
Published in: Journal of Applied Remote Sensing Volume 1, Issue 1
Show Author Affiliations
Chenghai Yang, USDA Agricultural Research Service (United States)
James H. Everitt, USDA Agricultural Research Service (United States)

© SPIE. Terms of Use
Back to Top