Share Email Print

Optical Engineering

Unified regularization framework for blind image super-resolution
Author(s): Yuanxu Chen; Yupin Luo; Dongcheng Hu
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Blind superresolution (BSR) is one of the challenges in image superresolution. We propose a new approach using a unified regularization framework, which solves image registration, point spread function (PSF) estimation, and high-resolution (HR) image reconstruction simultaneously. To achieve this, the anisotropic diffusion techniques are employed as one regularization term to preserve edge information in the HR image estimation, and a generalized version of the eigenvector-based (EVAM) constraint is developed to regularize the PSF. An alternating minimization algorithm is devised to find optimal solutions, and an effective numerical implementation scheme, based on local filtering, is proposed to suppress the ringing artifacts in the image reconstruction. Finally, experiments with synthetic and real data are presented to demonstrate the effectiveness and robustness of our approach, which can handle motion blur well and enhance resolution notably for very noisy images.

Paper Details

Date Published: 1 December 2007
PDF: 14 pages
Opt. Eng. 46(12) 127001 doi: 10.1117/1.2817219
Published in: Optical Engineering Volume 46, Issue 12
Show Author Affiliations
Yuanxu Chen, Tsinghua Univ. (China)
Yupin Luo, Tsinghua Univ. (China)
Dongcheng Hu, Tsinghua Univ. (China)

© SPIE. Terms of Use
Back to Top