Share Email Print

Optical Engineering

Diffractive optics as beam-shaping elements for plastics laser welding
Author(s): David A. Grewell; Avraham Benatar
Format Member Price Non-Member Price
PDF $20.00 $25.00

Paper Abstract

This work reviews the use of diffractive optics for beam-shaping of high-power lasers (50–100 W) for welding and microwelding of plastics. While the use of lasers to weld plastics is well known, the use of diffractive optics to reshape lasers for welding of plastics has not been previously reported. By using inverse Fourier transformations diffractive lenses were designed and fabricated. An 80 W fiber laser with a wavelength of 1084 nm was coupled in air to the diffractive optical element (DOE) to shape the beam into predetermined patterns. These patterns were then reduced with standard optics to a desired size. Weld quality was assessed in terms of fidelity and replication of the original bitmap image that was used to design the DOE. Good results were obtained for both image fidelity and replication. In many cases the weld image retained the individual bitmap elements of the original artwork used to encode the DOE. It was also found that the overall efficiencies of the system were as high as 59% and weld times were less than 1 s. Weld joints were also determined to be relatively strong and weld circles as small as a few hundreds of µm in diameter could be formed.

Paper Details

Date Published: 1 November 2007
PDF: 10 pages
Opt. Eng. 46(11) 118001 doi: 10.1117/1.2802588
Published in: Optical Engineering Volume 46, Issue 11
Show Author Affiliations
David A. Grewell, Iowa State Univ. (United States)
Avraham Benatar, The Ohio State Univ. (United States)

© SPIE. Terms of Use
Back to Top