Share Email Print
cover

Optical Engineering

Multispectral infrared image classification using filters derived from independent component analysis
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Spectral-spatial independent component analysis (ICA) basis functions of visible color images are similar to some processing elements in the human visual systems in that they resemble Gabor filters and show color opponencies. In this research we studied combined spectral-spatial ICA basis functions of multispectral mid wave infrared (MWIR) images. These ICA spectral-spatial basis functions were then used as filters to extract features from multispectral MWIR images for classification. The images were captured in the 3.0–5.0 μm, 3.7–4.2 μm, and 4.0–4.5 μm bands using a multispectral MWIR camera. In the proposed algorithm, phase relationships between the basis functions indicate how the extracted features from the different spectral band images can be combined. We used classification performance to compare features obtained by filtering using multispectral ICA basis functions, multispectral principal component analysis basis functions, and Gabor filters.

Paper Details

Date Published: 1 November 2007
PDF: 9 pages
Opt. Eng. 46(11) 116401 doi: 10.1117/1.2801401
Published in: Optical Engineering Volume 46, Issue 11
Show Author Affiliations
Srikant K. Chari, The Univ. of Memphis (United States)
Carl E. Halford, The Univ. of Memphis (United States)
Aaron L. Robinson, The Univ. of Memphis (United States)
Eddie L. Jacobs, The Univ. of Memphis (United States)


© SPIE. Terms of Use
Back to Top