Share Email Print

Journal of Applied Remote Sensing

Wheat and maize monitoring based on ground spectral measurements and multivariate data analysis
Author(s): Agustin Pimstein; Arnon Karnieli; David Bonfil
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Improved accuracy in the retrieval of crop biophysical variables is needed to enable a greater contribution of hyperspectral remote sensing data to site-specific crop management. One season of maize and two seasons of wheat field experiments were used to explore the potential of multivariate data analysis for retrieving crop biophysical variables from spectroscopic data. Canopy spectral data at 350-2500 nm were collected during the experiments, in which various seeding densities, fertilization, and irrigation treatments were applied to generate dry biomass, water-content and nitrogen-content variability. Partial least squares (PLS) models that considered the reflectance derivatives (1st and 2nd) and that used only significant wavelengths were evaluated. As the measurements were conducted throughout the whole season, a wide variability was observed, which was critical for obtaining a good calibration model. The use of derivatives and selection of the most significant wavelengths were found to be the best pre-processing methodologies to increase prediction accuracy. Significant predictive power was achieved for the validation dataset, especially for the wheat dry biomass (R2 ~0.75), for which similar results were obtained, even with data from a different season (R2 ~0.70). PLS-predicted wheat water content had a correlation of R2 ~0.60 with the measured values. An advantage was found in the use of PLS models, compared to common vegetation indices. Based on ground spectral measurements, this study confirms the potential of multivariate-data-analysis procedures for the interpretation of hyperspectral remote sensing data.

Paper Details

Date Published: 1 August 2007
PDF: 16 pages
J. Appl. Remote Sens. 1(1) 013530 doi: 10.1117/1.2784799
Published in: Journal of Applied Remote Sensing Volume 1, Issue 1
Show Author Affiliations
Agustin Pimstein, Ben Gurion Univ. of the Negev (Israel)
Arnon Karnieli, Ben-Gurion Univ. of the Negev (Israel)
David Bonfil, Gilat Research Ctr. (Israel)

© SPIE. Terms of Use
Back to Top