Share Email Print

Journal of Applied Remote Sensing

Dimensionality reduction of hyperspectral imagery
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this paper, we study the Locally Linear Embedding (LLE) for nonlinear dimensionality reduction of hyperspectral data. We improve the existing LLE in terms of both computational complexity and memory consumption by introducing a spatial neighbourhood window for calculating the k nearest neighbours. The improved LLE can process larger hyperspectral images than the existing LLE and it is also faster. We conducted experiments of endmember extraction to assess the effectiveness of the dimensionality reduction methods. Experimental results show that the improved LLE is better than PCA and the existing LLE in identifying endmembers. It finds more endmembers than PCA and the existing LLE when the Pixel Purity Index (PPI) based endmember extraction method is used. Also, better results are obtained for detection.

Paper Details

Date Published: 1 March 2007
PDF: 10 pages
J. Appl. Rem. Sens. 1(1) 013509 doi: 10.1117/1.2723663
Published in: Journal of Applied Remote Sensing Volume 1, Issue 1
Show Author Affiliations
Guangyi Chen, Canadian Space Agency (Canada)
Shen-En Qian, Canadian Space Agency (Canada)

© SPIE. Terms of Use
Back to Top