Share Email Print

Journal of Biomedical Optics

Boundary conditions in photoacoustic tomography and image reconstruction
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Recently, the field of photoacoustic tomography has experienced considerable growth. Although several commercially available pure optical imaging modalities, including confocal microscopy, two-photon microscopy, and optical coherence tomography, have been highly successful, none of these technologies can penetrate beyond ~1 mm into scattering biological tissues because all of them are based on ballistic and quasiballistic photons. Consequently, heretofore there has been a void in high-resolution optical imaging beyond this depth limit. Photoacoustic tomography has filled this void by combining high ultrasonic resolution and strong optical contrast in a single modality. However, it has been assumed in reconstruction of photoacoustic tomography until now that ultrasound propagates in a boundary-free infinite medium. We present the boundary conditions that must be considered in certain imaging configurations; the associated inverse solutions for image reconstruction are provided and validated by numerical simulation and experiment. Partial planar, cylindrical, and spherical detection configurations with a planar boundary are covered, where the boundary can be either hard or soft. Analogously to the method of images of sources, which is commonly used in forward problems, the ultrasonic detectors are imaged about the boundary to satisfy the boundary condition in the inverse problem.

Paper Details

Date Published: 1 January 2007
PDF: 10 pages
J. Biomed. Opt. 12(1) 014027 doi: 10.1117/1.2709861
Published in: Journal of Biomedical Optics Volume 12, Issue 1
Show Author Affiliations
Lihong V. Wang, Texas Agricultural & Mechanical Univ. (United States)
Xinmai Yang, Washington Univ. (United States)

© SPIE. Terms of Use
Back to Top