Share Email Print

Optical Engineering

Gaussian-beam weak scintillation on ground-to-space paths: compact descriptions and Rytov-method applicability
Author(s): Gary J. Baker; Robert S. Benson
Format Member Price Non-Member Price
PDF $20.00 $25.00

Paper Abstract

Recent papers comparing weak-scintillation data from wave-optics simulations with predictions derived from the Rytov perturbation method for ground-to-space Gaussian beams have revealed a region of inaccuracy in the Rytov-based predictions. The discrepancy region is defined by beam diameter and focus settings that place the target in the beam far field and the turbulence in the transmitter near field. Under such conditions turbulence-induced beam wander dominates the scintillation at the target. We develop a solution to the turbulent propagation physics that is applicable in the discrepancy region, and demonstrate agreement in scintillation behavior with our own wave-optics simulation data and with predictions from a rigorous extended Huygens-Fresnel analysis. A combination of our solution and Rytov-based scintillation theory can be used to yield accurate scintillation predictions throughout the weak-scintillation regime for ground-to-space beams. Separately, we show that Rytov-based scintillation theory best describes the physics of a wander-tracking transmitter (where beam wander has been removed from the propagation physics) at the mean transmitter aim point on the target plane, as opposed to the physics of a stationary transmitter.

Paper Details

Date Published: 1 October 2005
PDF: 10 pages
Opt. Eng. 44(10) 106002 doi: 10.1117/1.2076927
Published in: Optical Engineering Volume 44, Issue 10
Show Author Affiliations
Gary J. Baker, Lockheed Martin Advanced Technology Ctr. (United States)
Robert S. Benson, Lockheed Martin Corp. (United States)

© SPIE. Terms of Use
Back to Top