Share Email Print

Journal of Biomedical Optics

Image analysis of bioparticles accumulation and diamagnetic alignment in high-gradient magnetic field
Author(s): Svetlana B. Norina; Sang-Hyun Park; Jung-Dae Kim; Sungil Cho; Alexander N. Shalygin; Kwang-Sup Soh
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Magnetic properties of biological particles are measured in high-gradient magnetic separation (HGMS) analysis, revealing the concentrating process of nucleoprotein particles, ferritin, red blood cells, and eggs. A magnetic force acting on micrometer and submicrometer biological particles having diamagnetic or paramagnetic susceptibility with respect to the solution causes their movement and accumulation in gradient magnetic fields dependent on the values of the magnetic moments. The methods developed enable us to obtain the magnetic moments values of single particles and their assembly directly from magnetic separation and image analyses without assuming the detection of sizes. Our precision methods for the measurement of the capture traveling (magnetic diffusion) time and the accumulation (magnetic sedimentation) radius in HGMS show that it is really possible to determine the weak dia- or paramagnetic shifts of magnetic susceptibility up to 0.7×10–10 (SI units). HGMS analysis of the concentrating process of nucleoprotein granules (microcells, DNA granules, or nucleosome core particles) with polarization microscopy reveals phase transitions for DNA in granules, and separation accumulation of particles enables the determination of the diamagnetic susceptibility and anisotropy properties. Magnetic concentration effects always occur in living systems because micrometer-located gradient magnetic fields inside an organism are strong enough to cause drifts of cellular complexes and organelles of micrometer and submicrometer sizes. We report the appearance of superparamagnetic contamination inside developing shrimp eggs. In the developing shrimps eggs, ferritin aggregates are observed under weak gradient magnetic fields and diaparaferromagnetic changes are detected. A significant interruption of egg development is revealed in such fields.

Paper Details

Date Published: 1 September 2005
PDF: 12 pages
J. Biomed. Opt. 10(5) 051702 doi: 10.1117/1.2070127
Published in: Journal of Biomedical Optics Volume 10, Issue 5
Show Author Affiliations
Svetlana B. Norina, Seoul National Univ. (South Korea)
Sang-Hyun Park, Seoul National Univ. (South Korea)
Jung-Dae Kim, Gwangju Institute of Science and Technology (Korea, Republic of)
Sungil Cho, Seoul National Univ. (South Korea)
Alexander N. Shalygin, M.V. Lomonosov Moscow State Univ. (Russia)
Kwang-Sup Soh, Seoul National Univ. (South Korea)

© SPIE. Terms of Use
Back to Top