Share Email Print

Optical Engineering

Bayesian surface estimation for white light interferometry
Author(s): Michael Hissmann; Fred A. Hamprecht
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In conventional surface estimation using white light interferometry, data acquisition is followed by a preprocessing step in which the 3-D (space-time) data are reduced to a 2-D surface or height map. Finally, a postprocessing step eliminates the height outliers that arise from the preprocessing under ordinary experimental conditions. We introduce a Bayesian approach that unifies pre- and postprocessing by considering simultaneously both the full 3-D data set and knowledge concerning the surface smoothness. This knowledge is coded into the prior probability of local height configurations. The surface is estimated as the mode of the marginal posterior at each pixel. An adept formulation of the prior allows for the exact computation of the estimate, obviating the need to sample from the posterior using Markov chain Monte Carlo methods. A complete surface can thus be obtained in 3 to 30 s. A quantitative comparison with an (adaptive) median filter shows that all three approaches decimate outliers, but that the Bayesian estimation leads to smaller average absolute errors. For low scanning speeds and good raw data, this is due to a reduced tendency to oversmooth; for poor input data, the enhancement is explained by the more complete exploitation of the observations.

Paper Details

Date Published: 1 January 2005
PDF: 9 pages
Opt. Eng. 44(1) 015601 doi: 10.1117/1.1829651
Published in: Optical Engineering Volume 44, Issue 1
Show Author Affiliations
Michael Hissmann, Robert Bosch GmbH (Germany)
Fred A. Hamprecht, Univ. of Heidelberg (Germany)

© SPIE. Terms of Use
Back to Top