Share Email Print

Journal of Biomedical Optics

Second harmonic imaging of membrane potential of neurons with retinal
Author(s): Boaz A. Nemet; Voldymyr Nikolenko; Rafael Yuste
Format Member Price Non-Member Price
PDF $20.00 $25.00

Paper Abstract

We present a method to optically measure and image the membrane potential of neurons, using the nonlinear optical phenomenon of second harmonic generation (SHG) with a photopigment retinal as the chromophore [second harmonic retinal imaging of membrane potential (SHRIMP)]. We show that all-trans retinal, when adsorbed to the plasma membrane of living cells, can report on the local electric field via its change in SHG. Using a scanning mode-locked Ti-sapphire laser, we collect simultaneous two-photon excited fluorescence (TPEF) and SHG images of retinal-stained kidney cells and cultured pyramidal neurons. Patch clamp experiments on neurons stained with retinal show an increase of 25% in SHG intensity per 100-mV depolarization. Our data are the first demonstration of optical measurements of membrane potential of mammalian neurons with SHG. SHRIMP could have wide applicability in neuroscience and, by modifying rhodopsin, could in principle be subject for developing genetically engineered voltage sensors.

Paper Details

Date Published: 1 September 2004
PDF: 9 pages
J. Biomed. Opt. 9(5) doi: 10.1117/1.1783353
Published in: Journal of Biomedical Optics Volume 9, Issue 5
Show Author Affiliations
Boaz A. Nemet, Columbia Univ. (United States)
Voldymyr Nikolenko, Columbia Univ. (United States)
Rafael Yuste, Columbia Univ. (United States)

© SPIE. Terms of Use
Back to Top