Share Email Print

Journal of Biomedical Optics

Ultrahigh-resolution optical coherence tomography
Author(s): Wolfgang Drexler
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In the past two decades, optical coherence tomography (OCT) has been established as an adjunct diagnostic technique for noninvasive, high-resolution, cross-sectional imaging in a variety of medical fields. The rapid development of ultrabroad bandwidth light sources has recently enabled a significant improvement in OCT imaging resolution, demonstrating the potential of OCT to accomplish its original goal of performing noninvasive optical biopsies, i.e., the in vivo visualization of microstructural morphology in situ, which had previously only been possible with histopathology. In addition, these novel light sources might also enable the use of spectroscopic OCT, an extension of ultrahigh-resolution OCT, for enhancing image contrast as well as detecting spatially resolved functional, biochemical tissue information. State-of-the-art-light sources that now permit ultrahigh-resolution OCT covering the whole wavelength region from 500 to 1600 nm are reviewed and fundamental limitations of OCT image resolution are discussed. Ex vivo ultrahigh-resolution OCT tomograms are compared with histological results; first clinical in vivo ultrahigh-resolution OCT and preliminary spectroscopic OCT results are presented and their impact for future clinical and research applications is discussed.

Paper Details

Date Published: 1 January 2004
PDF: 28 pages
J. Biomed. Opt. 9(1) doi: 10.1117/1.1629679
Published in: Journal of Biomedical Optics Volume 9, Issue 1
Show Author Affiliations
Wolfgang Drexler, Univ. Wien (Austria)

© SPIE. Terms of Use
Back to Top