Share Email Print

Journal of Micro/Nanolithography, MEMS, and MOEMS

Environment-induced failure modes of thin film resonators
Author(s): Robert Kazinczi; Jeff R. Mollinger; Andre Bossche
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Resonant mode micromechanical devices have great potential due to their high sensitivity and relatively easy signal processing. As they are also sensitive to environmental effects, vacuum packaging is often required, which largely increases the costs. The current study focuses on environment induced reliability problems and degradation processes. An adsorption-induced stiffening effect was observed on thin SiNx and SiCx cantilever beams in air. The resonance frequency gradually increases in time. When the cantilever is subjected to mechanical shock or large deflection, the resonance frequency suddenly drops, and then increases again. Air, increased humidity, argon rich, and nitrogen rich atmosphere influence the stiffening and the shock response behavior. The effects are explained with a surface oxidation model. The oxide layer introduces stress in the structure increasing the overall stiffness, while mechanical shocks crack the layer. Silicon resonators gather airborne particles from the atmosphere due to electrostatic charging. The mass loading decreases the resonant frequency. These mechanisms lead to unstable resonance frequency and eventually to failure of the resonant mode device. Tests in inert environment suggest, that cheap, inert atmospheric packaging will provide good performance and reliable operation.

Paper Details

Date Published: 1 April 2002
PDF: 7 pages
J. Micro/Nanolith. 1(1) doi: 10.1117/1.1434979
Published in: Journal of Micro/Nanolithography, MEMS, and MOEMS Volume 1, Issue 1
Show Author Affiliations
Robert Kazinczi, Delft Univ. of Technology (Netherlands)
Jeff R. Mollinger, Delft Univ. of Technology (Netherlands)
Andre Bossche, Delft Univ. of Technology (Netherlands)

© SPIE. Terms of Use
Back to Top