Share Email Print

Journal of Electronic Imaging

Edge-preserved neural network model for image restoration
Author(s): Paul Bao; Dianhui Wang
Format Member Price Non-Member Price
PDF $20.00 $25.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper presents a combined approach for image restoration with edge-preserving regularization, subband coding, and artificial neural network. The edge information is detected from the source image as a priori knowledge to recover the details and reduce the ringing artifact of the subband coded image. The multilayer perceptron model is employed to implement the restoration of images. The main merit of the presented approach is that the neural network model is massively parallel with stronger robustness for transmission noise and parameter or structure perturbation, and it can be realized by very large scale integrated technologies for realtime applications. To evaluate the performance of the proposed approach, a comparative study with the set partitioning in hierarchical tree (SPIHT) has been made by using a set of gray-scale digital images. The experiment has shown that the proposed approach could result in considerably better performances compared with SPIHT on both objective and subjective quality for lower compression ratio subband coded image.

Paper Details

Date Published: 1 July 2001
PDF: 9 pages
J. Electron. Imag. 10(3) doi: 10.1117/1.1380389
Published in: Journal of Electronic Imaging Volume 10, Issue 3
Show Author Affiliations
Paul Bao, Hong Kong Polytechnic Univ. (Hong Kong)
Dianhui Wang, Hong Kong Polytechnic Univ. (Australia)

© SPIE. Terms of Use
Back to Top