Share Email Print
cover

Spie Press Book

Electro-Optical Imaging System Performance, Fifth Edition
Author(s): Gerald C. Holst
This item is not currently sold.

Book Description

Recently updated to 5th Edition, this reference contains all of the material you'll need to design, analyze, and evaluate the performance of imaging systems, and is written for those conversant in target characterization, atmospheric effects, optics, detectors, electronics, displays, or human perception of image quality. Although emphasis is placed on infrared systems, the principles apply to all imaging systems operating in the visible region of the spectrum. This 5th Edition is updated to reflect the most current available material, providing more detail on system performance effects, turbulence, the NEDT, as well as an extensive list of current target discrimination levels.

Copublished with JCD Publishing.


Book Details

Date Published: 31 December 2008
Pages: 538
Volume: PM187

Table of Contents
SHOW Table of Contents | HIDE Table of Contents

Table of Contents

Symbols and Acronyms

1 Introduction
1.1 Imaging system nomenclature
1.2 System modeling
1.3 Sensitivity and resolution limits
1.4 Infrared imaging systems
1.5 Infrared imaging system modeling
1.6 Model inputs
1.7 References

2 IR Imaging System Evolution
2.1 Optics
2.2 Scanners
2.3 Detectors and coolers
      2.3.1 Detector classification
      2.3.2 Specific detectors
      2.3.3 Detector operation
2.4 Specific systems
      2.4.1 Line scanners
      2.4.2 Common module systems
      2.4.3 EOMUX systems
      2.4.4 EMUX systems
      2.4.5 Second-generation systems
      2.4.6 Staring array systems
      2.4.7 Third-generation systems
2.5 Field of view
      2.5.1 Fill factor
      2.5.2 Staring arrays
      2.5.3 Scanning arrays
2.6 References

3 Radiometry
3.1 Radiative transfer
3.2 Planck's blackbody law
3.3 Camera formula
      3.3.1 Scanning arrays
      3.3.2 Staring arrays
3.4 Point source
3.5 Photometry
3.6 Normalization
3.7 References

4 MTF Theory
4.1 Windows and filters
4.2 Spatial frequency
4.3 Linear filter theory
      4.3.1 The EO system as a linear system
      4.3.2 Cascading MTFs
4.4 Superposition applied to optical systems
4.5 Phase shifts
4.6 References

5 Common Module Systems
5.1 Optics OTF
      5.1.1 Diffraction-limited OTF
      5.1.2 Central obscuration
      5.1.3 Non-circular apertures
      5.1.4 Anamorphic optics
      5.1.5 Aberrations
      5.1.6 Defocused optics
5.2 Detectors
5.3 Motion
      5.3.1 Linear motion
      5.3.2 Sinusoidal motion
      5.3.3 Random motion (jitter)
      5.3.4 Nonlinear scan mirror movement
      5.3.5 Low-frequency motion
5.4 Electronic MTF
      5.4.1 Conversion: Electrical frequency to spatial frequency
      5.4.2 Detector time constant
      5.4.3 Amplifiers
      5.4.4 Electrical filters
5.5 LEDs
5.6 Visual optics
5.7 Eye response
      5.7.1 Conversion: Eye spatial frequency to spatial frequency
      5.7.2 Eye MTF
      5.7.3 Eye contrast threshold function (CTF)
5.8 Optical zoom
5.9 System design example: Random motion
5.10 References

6 EOMUX Systems
6.1 Vidicon
      6.1.1 Conversion: Vidicon lines to spatial frequency
      6.1.2 Vidicon MTF
6.2 Video amplifiers and filters
      6.2.1 Conversion: Video frequency to spatial frequency
      6.2.2 Boost circuitry
      6.2.3 Video amplifiers
6.3 CRT monitors
6.4 References

7 EMUX Systems
7.1 Detector
      7.1.1 TDI
      7.1.2 SPRITE detector
      7.1.3 Uncooled detectors
7.2 Conversion: Sampling frequency to spatial frequency
7.3 Conversion: Video sampling frequency to spatial frequency
7.4 Digital to analog data
      7.4.1 Sample-and-hold
      7.4.2 Post-reconstruction filter
7.5 References

8 Staring Array Systems
8.1 Transfer efficiency
8.2 Flat panel arrays

9 Line Scanners
9.1 Rectangular aperture
      9.1.1 Diffraction-limited OTF
      9.1.2 Defocus OTF
      9.1.3 Ground coverage
9.2 Scanner
9.3 Motion
9.4 Electronic MTF
9.5 AN/AAD-5 CRT MTF
9.6 AN/AAD-5 film
      9.6.1 Conversion: Film response to spatial frequency
      9.6.2 Film MTF
9.7 References

10 Two-Dimensional MTF
10.1 Optics
10.2 Motion
      10.2.1 Linear motion
      10.2.2 Sinusoidal motion
      10.2.3 Random motion
10.3 Detector
10.4 Electronics
10.5 Digital processing
10.6 Visual optics
10.7 Vidicon
10.8 Displays
10.9 The eye
10.7 References

11 Sampling
11.1 Sampling theory
11.2 Horizontal sampling frequency
      11.2.1 Scanning systems
      11.2.2 Staring arrays
11.3 Vertical sampling frequency
      11.3.1 Scanning systems
      11.3.2 Staring systems
11.4 Reconstruction
      11.4.1 CRT monitor
      11.4.2 Flat-panel display
11.5 Fλ/d
11.6 Microscan
11.7 Super-resolution reconstruction
11.8 Sample-scene phase
11.9 Spurious response
      11.9.1 Schade's approach
      11.9.2 MTF squeeze
      11.9.3 Resolved cycle contraction
11.10 References

12 Imaging Processing
12.1 z-transform
12.2 Digital filters
      12.2.1 Boost filter
      12.2.2 Averaging filter
12.3 Electronic zoom (interpolation)
      12.3.1 Ideal interpolator
      12.3.2 Lanczos interpolator
      12.3.3 Pixel replication
      12.3.4 Linear interpolation
      12.3.5 Bilinear interpolation
      12.3.6 Image quality
12.4 Line-to-line interpolation
12.5 Noise reduction algorithms
12.6 Image restoration
12.7 References

13 Resolution
13.1 Analog metrics
13.2 NIIRS
13.3 Sampled data systems
13.4 Schade's equivalent resolution
      13.4.1 Analog systems
      13.4.2 Sampled data systems
13.5 References

14 Image Quality
14.1 Mathematical metrics
14.2 MTF
14.3 Perceived resolution
14.4 Subjective quality factor
14.5 MTFA
14.6 Square-root integral
14.7 Targeting task performance
14.8 Resolution versus perceivalbe detail
14.9 References

15 Atmospheric Transmittance
15.1 Atmospheric constituents
      15.1.1 Water vapor
      15.1.2 Aerosols
15.2 Visibility
      15.2.1 Meteorological range
      15.2.2 Contrast transmittance
15.3 LOWTRAN, MODTRAN, and HITRAN
15.4 Spectrally averaged atmospheric transmittance
15.5 Weather conditions
      15.5.1 Average conditions
      15.5.2 Probability of occurrence
      15.5.3 Naval model
      15.5.4 Land-based systems, horizontal path
      15.5.5 Land-based systems, slant path
15.6 MWIR versus LWIR
15.7 Sun glints
15.8 Solar scattering
15.9 Battlefield obscurants
15.10 References

16 Atmospheric MTF
16.1 CN2
16.2 Fried's coherence diameter
      16.2.1 Horizontal path length
      16.2.2 Slant path
16.3 Turbulence MTF
16.4 Aerosol MTF
16.5 References

17 Target Signatures
17.1 What is ΔT?
17.2 300K models
17.3 Area-weighted ΔT
17.4 Thermal structure metrics
17.5 Diurnal variations
      17.5.1 Solar heating
      17.5.2 ΔT cumulative probability
      17.5.3 Environmental modifiers
17.6 Active targets
      17.6.1 Fuel combustion
      17.6.2 Frictional heat
17.7 Typical ΔTs
17.8 Target signature modeling
17.9 Sky background
17.10 Target signatures in the visible
17.11 Path radiance
      17.11.1 Infrared path radiance
      17.11.2 Visible path radiance
17.12 References

18 Sensitivity and Noise
18.1 Noise equivalent bandwidth
18.2 Scanning arrays (analog system)
      18.2.1 Photon noise
      18.2.2 Johnson noise
      18.2.3 Amplifier noise
18.3 Staring arrays
      18.3.1 Shot noise
      18.3.2 Dark current
      18.3.3 Fixed pattern noise
      18.3.4 Multiplexer noise
      18.3.5 Quantization noise
18.4 Detector responsitivity
      18.4.1 Classical semiconductors
      18.4.2 Novel semiconductors
      18.4.3 Thermal detectors
18.5 Specific detectivity
      18.5.1 BLIP
      18.5.2 Johnson noise limited
      18.5.3 D*BB to D*p conversion
      18.5.4 D*300
      18.5.5 Focal ratio
18.6 System SNR
18.7 NEDT
      18.7.1 Scanning systems
      18.7.2 Staring arrays
      18.7.3 Uncooled systems
      18.7.4 Background temperature
      18.7.5 Variable integration time
18.8 Real systems
      18.8.1 Three-dimensional noise model
      18.8.2 Fixed pattern noise
      18.8.3 Noise figure
      18.8.4 Non-scene photons
18.9 Signal-to-noise optimization
18.10 300K models
18.11 NEI
18.12 References

19 System Performance Models
19.1 1975 NVL model
19.2 FLIR92
      19.2.1 FLIR92 theory
      19.2.2 Moderate aspect ratio targets
      19.2.3 SNRTH and tE
      19.2.4 Frame integration
      19.2.5 Head movement
      19.2.6 Embedded 1975 NVL model
      19.2.7 Two-dimensional MRT
      19.2.8 The brick wall
19.3 NVTherm Sept 2002
19.4 NVThermIP
19.5 TRM3
19.7 Model comparisons
19.8 References

20 Target Discrimination
20.1 One-dimensional target acquisition
      20.1.1 Johnson criteria
      20.1.2 Extended discrimination
      20.1.3 Target transfer probability function
20.2 Two-dimensional discrimination
      20.2.1 Discrimination requirements
      20.2.2 Two-dimensional TTPF
      20.2.3 Targeting task performance
20.3 Current definitions
20.4 Current N50/V50 values
20.5 Hot spot detection
20.6 Clutter
20.7 References

21 Range Predictions
20.1 ACQUIRE
      21.1.1 Range prediction methodology
      21.1.2 Range performance probability
      21.1.3 Two fields of view
21.2 Trade-off analyses
      21.2.1 Line-of-sight stabilization
      21.2.2 Resolution versus sensitivity
      21.2.3 STADIUM FLIR
21.3 NVThermIP
      21.3.1 Viewing distance
      21.3.2 Electric zoom
      21.3.3 Scene contrast
      21.3.4 Frame averaging
      21.3.5 Image enhancement
      21.3.6 Super-resolution reconstruction
21.4 Simplified range predictions
      21.4.1 Trade-off analyses
      21.4.2 Detector-limited systems
21.5 Pixels versus cycles
21.6 Pixels on target
21.7 300K models
21.8 Search
21.9 GIQE/NIIRS
21.10 References

Appendix 1 (Focal ratio)
Appendix 2 (CosineNθ)
Appendix 3 (Central limit theorem)

Index

© SPIE. Terms of Use
Back to Top