Share Email Print

Spie Press Book

Biologically Inspired Intelligent Robots
Editor(s): Yoseph Bar-Cohen; Cynthia Breazeal
Format Member Price Non-Member Price

Book Description

The multidisciplinary issues involved in the development of biologically inspired intelligent robots include materials, actuators, sensors, structures, functionality, control, intelligence, and autonomy. This book reviews various aspects ranging from the biological model to the vision for the future.


Book Details

Date Published: 13 May 2003
Pages: 406
ISBN: 9780819448729
Volume: PM122

Table of Contents
SHOW Table of Contents | HIDE Table of Contents
Preface / xiii
Chapter 1 Biologically-Inspired Intelligent Robots / 1
Cynthia Breazeal, Yoseph Bar-Cohen
1.1 Introduction / 2
1.1.1 Historical precursors / 2
1.1.2 Modern perspectives / 4
1.2 Nature as a Model for Inspiration / 6
1.3 The Process of Biomimetic Design / 10
1.4 Themes of Biomimetic Design / 11
1.4.1 Biomimetic structures and actuators / 11
1.4.2 Believable and realistic animation / 13
1.4.3 Human augmented technologies / 14
1.4.4 Technologically enhanced humans / 15
1.4.5 Biomimetic robots / 17
1.4.6 Applications / 20
1.5 Summary and Outlook / 21
1.6 Acknowledgement / 22
References / 22
Chapter 2 Biological Inspiration for Muscle Like Actuators of Robots / 25
Kenneth Meijer, Yoseph Bar-Cohen, Robert J. Full
2.1 Biological Inspiration / 26
2.2 Muscle: A Prime Mover / 27
2.3 Muscle Metrics / 28
2.3.1 Force, strain and speed / 29
2.3.2 Capacity to do work / 30
2.3.3 Realized performance: the workloop technique / 31
2.4 Electroactive Polymers as Artificial Muscles / 31
2.4.1 Historical review and currently available active polymers / 32
2.4.2 Comparison between electroactive polymer actuators and biological muscle / 33
2.5 Morphology: Tuned To The Task / 35
2.5.1 Reducing weight / 35
2.5.2 Trading force for distance and speed / 37
2.5.3 Elastic mechanisms / 38
2.5.4 Controlling a multisegmented body with linear actuators / 39
2.6 Concluding Remarks / 40
References / 41
Chapter 3 Biomimetic Animated Creatures / 47
Bruce Blumberg
3.1 Introduction: A Lesson From Dogs and Cats / 48
3.2 The Intentional Stance / 50
3.2.1 Desires / 50
3.2.2 Beliefs / 51
3.2.3 Actions / 52
3.3 Principles of Expressive Animation / 53
3.3.1 Squash and stretch / 53
3.3.2 Anticipation / 54
3.3.3 Follow-through / 55
3.3.4 Secondary action / 56
3.3.5 Timing / 56
3.3.6 Exaggeration / 57
3.3.7 Slow in and slow out / 57
3.3.8 Staging / 57
3.3.9 Convey one emotional state or thought at a time / 58
3.3.10 Summary / 59
3.4 Borrowing from Nature: Biomimetic Techniques for Animation / 59
3.4.1 Procedural / 60
3.4.2 Inverse kinematics / 60
3.4.3 Perlin noise / 61
3.4.4 Sampled motion / 62
3.4.5 Verbs, adverbs, and pose graphs / 63
3.5 Toward an Inner-life: Low-level Intelligence for Low-level Animation / 65
3.6 State of the Art: Hard Problems and Future Directions / 68
3.7 Conclusions / 68
References / 69
CHAPTER 4 Haptic Devices for Virtual Reality, Telepresence and Human-Assistive Robotics / 73
Allen Fisch, Constantinos Mavroidis, Juan Melli-Huber, Yoseph Bar-Cohen
4.1 Introduction / 74
4.2 Haptic Systems / 76
4.3 Current Devices / 78
4.3.1 Exoskeletons and stationary devices / 79
4.3.2 Gloves and wearable devices / 81
4.3.3 Point-source and specific-task devices / 83
4.3.4 Locomotion interfaces and full body-force feedback / 85
4.3.5 Force feedback input devices / 86
4.3.6 Tactile displays / 87
4.4 Haptic Systems Using Electro-Rheological Fluids / 88
4.4.1 Electro-rheological fluids and haptics / 88
4.4.2 A MEMICA exoskeleton with on-demand controlled resistivity
and operability (ExODeCRO) using ERF-based elements / 92
4.5 Conclusion and Future Work / 97
4.6 Acknowledgments / 98
References / 98
Chapter 5 Cyborg Technology - Biomimetic Orthotic and Prosthetic Technology / 103
Hugh Herr, Grahm Paul Whiteley, Dudley Childress
5.1 Introduction / 104
5.2 A Brief History of Orthotic and Prosthetic Technological Development / 104
5.3 Orthotic and Prosthetic Systems: State of the Art / 106
5.3.1 Upper extremity prosthetic systems / 106
5.3.2 Lower extremity prosthetic systems / 108
5.3.3 Lower and upper extremity orthotic systems / 109
5.4 New Horizons for Orthotic and Prosthetic Technology: Merging Body and Machine / 109
5.4.1 Biomimetic structural design / 109
5.4.2 Biomimetic actuation / 124
5.4.3 Biomimetic control / 127
5.5 Concluding Remarks / 138
References / 139
Chapter 6 Character Creation - Structural Elements of Biomimetic Robots / 145
Richard Landon
6.1 Introduction / 146
6.2 Concept and Development / 147
6.2.1 Rendering / 149
6.2.2 Maquette / 149
6.2.3 Construction plan / 149
6.3 Sculpture / 150
6.3.1 Sculpting stand / 150
6.3.2 Sculptural detail and finish / 151
6.4 Lab Work / 152
6.4.1 Mold making preparation / 153
6.4.3 Mold making / 154
6.4.4 Coring / 157
6.5 Mechanical Design / 159
6.5.1 Mechanical structure fabrication and assembly / 160
6.5.2 Power systems / 161
6.5.3 Individual systems design / 163
6.6 Telemetry / 165
6.6.1 The graphic user interface / 167
6.6.2 Figure to telemetry connection / 169
6.7 Project Completion / 170
6.7.1 Skin gluedown / 170
6.7.2 Final test and adjust / 170
6.8 Portrayal of Life / 171
6.9 Summary and Conclusion / 175
6.10 Acknowledgements / 176
References / 178
Chapter 7 Functionality Elements of Biomimetic Robots - Sensors, Actuators and Power Supplies / 179
Gill A. Pratt
7.1 Introduction / 180
7.2 Sensors / 180
7.2.1 Sight / 180
7.2.2 Infrared sensing / 182
7.2.3 Distance measurement / 182
7.2.4 Touch and pressure / 183
7.2.5 Proprioception / 183
7.2.6 Smell and taste / 184
7.2.7 Electric field / 184
7.2.8 Fluid flow / 185
7.2.9 Magnetic Field / 185
7.2.10 Sound / 186
7.2.11 Acceleration, gravity, and angular velocity / 186
7.3 Actuators / 188
7.3.1 Sound / 188
7.3.2 Light emission and reflectance / 188
7.3.3 Mechanical force and motion / 188
7.4 Actuator Technologies / 192
7.4.1 Pneumatics / 192
7.4.2 Hydraulic actuators / 195
7.4.3 Electrical actuators / 195
7.4.4 Electromagnetic Motors / 195
7.4.6 Artificial muscles / 200
7.5 Power Supplies / 201
7.5.1 Reference energy densities / 201
7.5.2 Batteries / 201
7.5.3 Fuel cells / 202
7.5.4 Hydrogen peroxide / 202
7.6 Summary / 202
7.7 References / 202
Chapter 8 Biomimetic Robot Control / 211
Dan Paluska, Maja J. Mataric, Jerry Pratt
8.1 Architectures for Robot Control / 212
8.1.1 Reactive control / 212
8.1.2 Deliberative control / 213
8.1.3 Hybrid control / 213
8.1.4 Behavior-based control / 214
8.1.5 Design and coordination of behaviors / 215
8.1.6 A brief comparison of architectures / 216
8.1.7 Adaptation and learning / 217
8.1.8 Demonstrations and applications / 218
8.1.9 Summary / 220
8.2 Humaniod Upper-Body Control / 220
8.2.1 Motivation / 220
8.2.2 A biomimetic approach / 221
8.2.3 Related work on imitation / 222
8.2.4 Choosing the set of primitives / 223
8.2.5 Automated derivation of primitives / 224
8.2.6 Visual classification into primitives / 226
8.2.7 Some examples of using motor primitives / 227
8.2.8 Summary / 227
8.3 Biped Walking Control / 228
8.3.1 The bipedal walking problem / 229
8.3.2 Modulated playback / 231
8.3.3 Mathematical synthesis / 234
8.3.4 Passive dynamics / 237
8.3.5 Physics-based heuristics / 241
8.3.6 Summary / 243
References / 244
Chapter 9 Cognitive Modeling for Biomimetic Robots / 253
Cynthia Breazeal
9.1 Introduction / 254
9.2 Visual Attention and Guided Search / 254
9.3 A Robotic Implementation of Attention / 256
9.3.1 Bottom-up contribution: feature maps / 257
9.3.2 Computing the attention map / 258
9.3.3 Top-down contribution: task-based influences / 258
9.3.4 Habituation effects / 259
9.3.5 Attention drives eye movement / 259
9.3.6 Serial attentive processing / 259
9.4 Animal Motivation and Behavior: A View From Ethology / 260
9.4.1 Perceptual contributions / 261
9.4.2 Motivational contributions / 262
9.4.3 Behavior groups and hierarchies / 262
9.5 Robotic Implementation of Behavior / 264
9.5.1 Building blocks of behavior / 264
9.5.2 Perceptual contributions: modeling releasers / 266
9.5.3 Internal contributions: modeling motivation / 266
9.5.4 The organization of behavior / 269
9.6 Models of Emotion: A View from Evolution / 272
9.6.1 Theory of basic emotions / 272
9.7 Robotic Implementation of Basic Emotions / 274
9.7.2 Affective appraisal and emotive elicitors / 274
9.7.3 Emotion activation and arbitration / 276
9.7.4 Emotive responses / 278
9.8 Summary / 280
References / 280
Chapter 10 Biologically Inspired Robotic Applications / 285
David Hanson, Daniela Rus, Steven Canvin, Gernot Schmierer
10.1 Introduction / 286
10.2 Biology - A MOdel for Designers of Biomimetic Applications / 288
10.3 Building-Block Functions of Biomimetic Robots / 290
10.3.1 Movement and mechanical biomimetics / 290
10.3.2 Biomimetics materials and properties / 301
10.3.3 Intelligent biomimetics / 302
10.3.4 Machine vision applications / 303
10.3.5 Machine emotions applications / 304
10.3.6 Synthetic language applications / 305
10.3.7 Reverse engineering the human brain / 307
10.4 Self-reconfiguring Robots / 308
10.4.1 Robots that morph / 308
10.4.2 Hardware for self-reconfiguring robots / 309
10.4.3 Capabilities of self-reconfiguring robots / 314
10.4.4 Addressing the challenge to the technology / 316
10.5 Robotic Smart Toys / 316
10.5.1 Current biomimetic toys / 317
10.4.2 The shape of toys to come / 331
10.6 Entertainment Robotics-A Hotbed for Expressive Robotics / 332
10.6.1 Recent animatronics projects / 333
10.6.2 Trends in the fiels of animatronics / 338
10.7 Other Biomimetic Applications / 339
10.7.1 Medicine and caretaking / 339
10.7.2 Fishery exploration / 341
10.7.3 Artificial life and computer generated imagery / 341
10.7.4Service Robots / 342
10.8 Concluding Words and Outlook for Future Applications / 342
10.9 Acknowledgements / 344
References / 344
Chapter 11 Outlook for the Intelligent Biomimetic Robots Technology / 351
Yoseph Bar-Cohen, Cynthia Breazeal
11.1 Introduction / 352
11.2 Biology as an Inspiring Model / 353
11.2.1 Desired biomimetic characteristics / 354
11.2.2 Inspired by biology - design concepts for reconfigurable robots / 357
11.2.3 Potentials and challenges to using artificial muscles / 358
11.2.4 Operation as individual and social robots / 360
11.3 Turning Science Fiction into Science Reality / 361
11.4 Challenges to Developing Biomimetic Intelligent Robots / 366
11.4.1 Emulating natural muscles / 367
11.4.2 Creation of animated creatures / 368
11.4.3 Haptic interfaces / 369
11.4.4 Cyborg technology / 371
11.4.5 Aesthetic and structural elements of robots / 371
11.4.6 Component technologies of robots / 372
11.4.7 Low-level control of biomimetic robots / 373
11.4.8 Cognitive modeling of robots / 373
11.4.9 Future biomimetic robots / 374
11.5 Concluding Words / 376
11.6 Acknowledgements / 378
References 378
Index / 381
Author and Editor Biographies / 387

© SPIE. Terms of Use
Back to Top