Share Email Print
cover

Spie Press Book

Optical Design Fundamentals for Infrared Systems, Second Edition
Author(s): Max J. Riedl
Format Member Price Non-Member Price

Book Description

The practical, popular 1995 tutorial has been thoroughly revised and updated, reflecting developments in technology and applications during the past decade. New chapters address wave aberrations, thermal effects, design examples, and diamond turning.

Book Details

Date Published: 15 March 2001
Pages: 202
ISBN: 9780819440518
Volume: TT48

Table of Contents
SHOW Table of Contents | HIDE Table of Contents
Preface xiv
Historic Remarks xvi
Chapter 1. Radiometric Considerations
1.1 Introduction 1
1.2 Basic Optical Relations 1
1.3 Signal-to-Noise Ratio 2
1.4 Extended Simplified Radiometric Performance Equation 4
1.5 Thermal Radiation Laws 4
1.5.1 Blackbody radiation and Planck's law 5
1.5.2 The Stefan-Boltzmann law 6
1.5.3 Wien's displacement law 6
1.5.4 Kirchhoff's law and emissivity 7
1.6 Transmission Through the Atmosphere 8
1.6.1 Permanent constituents of dry atmosphere 8
1.6.2 Variable constituents 9
1.6.3 Approximation (assumption) 9
1.6.4 Precipitable water (definition) 10
1.6.5 Humidity 11
1.6.6 Precipitable water (calculation) 11
1.6.7 Atmospheric transmission (calculation) 12
1.6.8 Computer models 13
1.7 Typical IR Detectors 14
1.7.1 Thermal detectors 14
1.7.2 Photon or quantum detectors 14
1.7.3 Photoconductive detectors 14
1.7.4 Specific detectivity and noise equivalent bandwidth 15
1.7.5 Detector configurations 16
1.8 References 17
Chapter 2. Basic Optics
2.1 Introduction 18
2.2 Snell's Law and the Prism 19
2.3 The Transition from a Prism to a Lens 19
2.4 Image Formation 20
2.5 Object-Image Relations 22
2.6 Stops, Pupils, and Windows 24
2.7 Throughput 26
2.8 Energy Transfer 27
2.8.1 Signal-to-noise calculations 28
2.9 Differential Changes 29
2.10 Optical Gain 30
2.10.1 Immersion lenses 30
2.10.2 Light pipes 33
2.10.3 Field lens 34
2.11 Field of View for Staring Arrays 34
2.12 References 35
Chapter 3. Primary Aberrations
3.1 Introduction 36
3.2 Primary Aberrations 36
3.2.1 Spherical aberration 36
3.2.2 Coma 37
3.2.3 Astigmatism 38
3.2.4 Field curvature 39
3.2.5 Distortion 40
3.2.6 Axial chromatic aberration 40
3.2.7 Lateral chromatic aberration 41
3.3 Calculations of Primary Aberrations 41
3.3.1 Spherical aberration 43
3.3.2 Coma 45
3.3.3 Astigmatism 46
3.3.4 Field curvature 46
3.3.5 Astigmatism and field curvature combined 47
3.3.6 Axial chromatic aberration 48
3.3.7 Numerical example 49
3.4 General Aberration Correction Methods 52
3.5 Doublets 53
3.5.1 Two elements, same material 53
3.5.2 Two elements, different materials 54
3.5.3 The achromat 55
3.6 Two Thin Air-spaced Elements 56
3.6.1 The Petzval objective 57
3.6.2 Refractive beam expanders 58
3.6.3 Telephotos 61
3.7 Reflective Optics 62
3.7.1 The spherical mirror 62
3.7.2 The Mangin mirror 64
3.7.3 Classical two-mirror configurations 66
3.7.4 The two-sphere Cassegrain system 67
3.7.5 The two-sphere Gregory system 70
3.7.6 Schwarzschild, a very special case 71
3.7.7 Reflective beam expanders 72
3.8 Diffraction Limit 73
3.9 Resolution of Imaging Systems 74
3.10 References 75
Chapter 4. Wave Aberrations
4.1 Introduction 76
4.2 Diverging and Converging Waves 76
4.3 Optical Path Length OPL 77
4.4 Optical Path Difference OPD (Wave Front Aberration) 77
4.5 Spherical Aberration 77
4.5.1 Numerical example 78
4.5.2 Best focus position 80
4.6 Third Order Spherical Aberration 81
4.7 Depth of Focus 81
4.8 References 81
Chapter 5. Special Optical Surfaces and Components
5.1 Introduction 82
5.2 The Plane-Parallel Plate 82
5.2.1 Displacements 83
5.2.2 Optical micrometer 84
5.2.3 Aberration contributions 85
5.2.4 Application remarks 86
5.2.5 The wedge (thin prism) 89
5.3 Domes 90
5.4 The Ball Lens 92
5.4.1 Spherical aberration 93
5.4.2 An aspherized ball lens 93
5.5 Gradient Index Lens 94
5.6 Conic Sections and General Aspheres 96
5.6.1 Mathematical expressions 97
5.6.2 Reflectors with conic section surfaces 98
5.6.3 Lenses with conic section surfaces 99
5.6.4 Common two-mirror configurations using conic section surfaces 102
5.6.5 General aspheres (surfaces of rotation) 102
5.6.6 Two conic section mirrors with an aspheric corrector 103
5.6.7 Three-mirror configurations 104
5.7 Diffractive (Binary) Optics 106
5.7.1 The simple diffractive singlet 107
5.7.2 The hybrid achromat 108
5.7.3 Numerical examples 110
5.7.4 Diffraction efficiency 113
5.7.5 "Useful" spectral bandwidth 114
5.7.6 Diffraction efficiency for a particular order 114
5.7.7 The hybrid achromat, corrected for chromatic and spherical aberrations 115
5.7.8 Binary optics 116
5.8 References 11
Chapter 6. Design Examples
6.1 Introduction 118
6.2 Basic Assumptions for the High-and Low Temperature Applications 118
6.2.1 Optics for high-temperature system (3-5 (m) 119
6.2.2 Optics for low-temperature system #1 (8-12 (m) 120
6.2.3 Optics for low-temperature system #2 (8-12 (m) 120
6.2.4 Optics for low-temperature system #3 (8-12 (m) 121
6.3 The Improved Petzval Objective 122
6.3.1 Numerical example for a LWIR application 123
6.3.2 Manufacturing remarks 125
6.4 Instantaneous Field of View 125
6.5 References 126
Chapter 7. Thermal Effects
7.1 Introduction 127
7.2 Changing Parameters 127
7.3 Defocus with Change of Temperature 128
7.4 Defocus of Singlet 128
7.5 Athermalization with a Doublet 129
7.6 The Athermalized Achromat 131
7.6.1 The all-refractive athermal achromat 132
7.6.2 The hybrid athermal achromat 133
7.7 Cold Stop and Cold Shield 134
7.7.1 Cold stop 134
7.7.2 Cold shield 135
7.8 References 135
Chapter 8. Optical Coatings
8.1 Introduction 136
8.2 Effects at a Single Surface 136
8.3 Two Plane-Parallel Surfaces 137
8.4 Antireflection Coatings 138
8.5 Reflective Coatings 140
8.6 Typical Interference Filters 141
8.6.1 Angular sensitivity of filters 143
8.6.2 Thermal sensitivity of filters 144
8.7 References 145
Chapter 9. Image Evaluation
9.1 Introduction 146
9.2 Blur Spot Measurements 146
9.2.1 Circular mask 146
9.2.2 Slit 147
9.2.3 Knife Edge 147
9.3 Energy Distribution 149
9.4 Modulation Transfer Function 150
9.4.1 Overview 150
9.4.2 Contrast and resolving power 152
9.4.3 Diffraction MTF 155
9.4.4 Geometric MTF 156
9.4.5 Numerical example 157
9.5 References 158
Chapter 10. Diamond Turning
10.1 Introduction 159
10.2 Overview 159
10.3 Surface Finish 160
10.4 Scattering 162
10.5 Shape Correction 163
10.6 Optical Surface Testing 163
10.6.1 Surface roughness 163
10.6.2 Surface shape 163
10.7 Machining Time 164
10.8 Further Progress and Developments 164
10.9 References 165
Appendix
A.1 Paraxial Ray Tracing 166
A.1.1 Surface equations 166
A.1.2 Power equations (ray tracing through thin lenses) 168
A.2 Spherical Aberration of a Thin Lens 169
A.2.1 Derivation of expression 169
A.2.2 Blur spot size 170
A.3 References 171
Index 172

© SPIE. Terms of Use
Back to Top