San Diego Convention Center
San Diego, California, United States
19 - 23 August 2018
Course (SC1247)
Polarized Light and Optical Design
Monday 20 August 2018
8:30 AM - 5:30 PM

Member Price $750.00
Non-Member Price $860.00
Student Member Price $419.00
  • Course Level:
  • Intermediate
  • CEU:
  • 0.7
Polarized Light and Optical Systems surveys polarization effects in optical systems and their simulation by polarization ray tracing. First polarized light is reviewed with Jones vector and Stokes parameter descriptions. Polarization elements and effects, including retardance and diattenuation, can be described by Jones matrices for coherent and ray tracing calculations, or with Mueller matrices for incoherent calculations. A framework for polarization ray tracing is presented for nearly spherical waves in optical systems to include the large set of polarization effects which occur: polarization elements, Fresnel equations, thin films, anisotropic materials, diffractive optical elements, stress birefringence, and thin films. These polarization aberrations adversely affect the point spread function/matrix and optical transfer function/matrix.
Learning Outcomes
  • explain fundamentals of polarized light and polarization elements in optical systems
  • explain Jones and Mueller calculus
  • describe polarized light propagating in 3D
  • classify Fresnel aberrations, thin films, and polarization aberrations
  • describe image formation with polarization aberrations
  • identify anisotropic materials, crystal polarizers and retarders
  • describe polarization of diffractive optical elements, gratings and wire grid polarizers
  • distinguish stress birefringence
  • identify polarization effects in liquid crystal cells
  • compare polarization ray trace and polarization aberrations of a telescope
This is an intermediate level class is intended for educators, students, lens designers, optical engineers, scientists, and managers who need to understand and apply polarization concepts to optical systems. Prior exposure to optical design programs, polarization, and to linear algebra would be helpful.
About the
Russell A. Chipman is Professor of Optical Sciences at the University of Arizona and a Visiting Professor at the Center for Optics Research and Education (CORE), Utsunomiya University, Japan. He founded Airy Optics Inc. which provides polarization analysis software. He teaches courses in polarized light, polarimetry, and polarization optical design at both Universities. Prof. Chipman received his BS in Physics from MIT and MS and Ph. D. in Optical Science from the University of Arizona. He is a Fellow of OSA and SPIE. He received SPIE’s 2007 G. G. Stokes award for research in Polarimetry and OSA’s Joseph Fraunhofer Award/Robert Burley Award for Optical Engineering in 2015. He is a Co-Investigator on NASA/JPL’s Multi-Angle Imager for Aerosols, a polarimeter scheduled for launch into earth orbit around 2021 for monitoring aerosols and pollution in metropolitan areas. He is also developing UV and IR polarimeters for other NASA exoplanet and remote sensing missions. He has recently focused on developing the Polaris-M polarization ray tracing code, available from Airy Optics, which analyzes optical systems with anisotropic materials, diffractive optical elements, stress birefringence, polarized scattered light, and many other effects.
Garam Young graduated with a BS in Physics from Seoul National University in Korea and received her doctorate from University of Arizona’s College of Optical Sciences, also earning Valedictorian and Outstanding Graduate Student honors. She then developed polarization features and optimization features for CODE V and LightTools with Synopsys in Pasadena, and she currently works as an optical and illumination engineer in the Bay Area. She is a co-author of the textbook “Polarized Light and Optical Systems” published by CRC Press in 2018.
COURSE PRICE INCLUDES the text Polarized Light and Optical Systems (CRC Press, 2018) by Russell Chipman, Wai Sze Tiffany Lam, and Garam Young.
Back to Top